

PaveScan Calibration w / Cores

Rich Giessel, P.E.

Sweden & Norway: April 2-3, 2019

- 1. Be fussy and precise
- 2. Strive for $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation
- 4. Select 21 Core Locations with PaveScan
- 5. Collect time readings
- 6. Collect distance readings
- 7. Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)
- 8. Use vacuum drying and sealing methods for determination of Bulk Density

1.Be "fussy" and precise

- 2. Strive for $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation
- 4. Select 21 Core Locations with PaveScan
- 5. Collect time readings
- 6. Collect distance readings
- 7. Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)
- 8. Use vacuum drying and sealing methods for determination of Bulk Density

- 1. Be "fussy" and precise **2.Strive for** $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation
- 4. Select 21 Core Locations with PaveScan
- 5. Collect time readings
- 6. Collect distance readings
- 7. Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)
- 8. Use vacuum drying and sealing methods for determination of Bulk Density

- 1. Be "fussy" and precise
- 2. Strive for $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation
- 4. Select 21 Core Locations with PaveScan
- 5. Collect time readings
- 6. Collect distance readings
- 7. Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)
- 8. Use vacuum drying and sealing methods for determination of Bulk Density

Statistics

Lateral Offset 💵	Sensor Position ↓†	Serial # ↓†	Start Dist ↓†	End Dist ↓†	Median↓↑	Average↓↑	Min ↓†	Max ↓†
	Left	60	844+00.00	838+00.00	93.2307	92.9579	87.0431	99.334
3	Center	61	844+00.00	838+00.00	95.4564	95.2444	90.0574	101.737
5	Right	63	844+00.00	838+00.00	94.8236	94.3258	89.3303	99.3309
7	Right	63	838+00.00	844+00.00	95.5651	94.8967	89.3076	99.4359
9	Center	61	838+00.00	844+00.00	94.9635	94.8956	85.7457	100.383
11	Left	60	838+00.00	844+00.00	93.6697	93.8789	89.137	98.7664

Maximum Dielectric for 600 feet

Lateral Offset ↓ †	Sensor Position ↓ ↑	Serial # ↓†	Start Dist ↓↑	End Dist ↓↑	Median 🎝	Average	Min 💵	Max 🚛
3	Center	61	844+00.00	838+00.00	5.21607	5.1903	4.59799	5.89253
9	Center	61	838+00.00	844+00.00	5.16111	5.15111	4.07718	5.75024
7	Right	63	838+00.00	844+00.00	5.22815	5.15026	4.50925	5.64966
1	Left	60	844+00.00	838+00.00	4.96562	4.93171	4.23659	5.63876
5	Right	63	844+00.00	838+00.00	5.14547	5.08722	4.51195	5.63844
11	Left	60	838+00.00	844+00.00	5.01548	5.03676	4.48894	5.57794

Minimum Dielectric for 600 feet

Lateral Offset ↓ ↑	Sensor Position ↓ †	Serial # ↓↑	Start Dist _↓†	End Dist ↓†	Median 🎼	Average 1	Min 💵	Max 🕼
9	Center	61	838+00.00	844+00.00	5.16111	5.15111 (4.07718	5.75024
1	Left	60	844+00.00	838+00.00	4.96562	4.93171	4.23659	5.63876
11	Left	60	838+00.00	844+00.00	5.01548	5.03676	4.48894	5.57794
7	Right	63	838+00.00	844+00.00	5.22815	5.15026	4.50925	5.64966
5	Right	63	844+00.00	838+00.00	5.14547	5.08722	4.51195	5.63844
3	Center	61	844+00.00	838+00.00	5.21607	5.1903	4.59799	5.89253

Range of Relative Permittivity

Max – Min = Range 5.8925 - 4.0772 = 1.815

1.815 > 0.80 So Range of values is Good

Range of Relative Permittivity

Max – Min = Range 5.8925 - 4.0772 = 1.815

1.815 > 0.80 So Range of values is Good

- 1. Be "fussy" and precise
- 2. Strive for $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation

4. Select 21 Core Locations with PaveScan

- 5. Collect time readings
- 6. Collect distance readings
- 7. Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)
- 8. Use vacuum drying and sealing methods for determination of Bulk Density

Core Locations Sorted by Distance

Lateral Offset	1 Sensor Position	↓† Serial #	↓† Distance ↓L D)ielectric 🛛 👫
11	Left	60	838+02.70	5.02
1	Left	60	838+35.10	5.03
9	Center	61	838+87.50	5.13
5	Right	63	840+23.20	5.10
1	Left	60	840+88.60	4.50
1	Left	60	841+11.10	4.47
1	Left	60	841+51.90	4.49
5	Right	63	841+98.20	4.52
3	Center	61	842+64.70	5.61
9	Center	61	842+84.00	5.56
5	Right	63	842+89.60	5.49
3	Center	61	843+18.80	5.51

Field Book

Core #	Station	Distance	Range	Dielectric	Sensor #	Position	Offset
	83800.0	=start station					
1	83802.7	2.7	Mid	5.02	60	Left	11
2	83835.1	32.4	Mid	5.03	60	Left	1
3	83887.5	52.4	Mid	5.13	61	Center	9
4	84023.2	135.7	Mid	5.10	63	Right	5
5	84088.6	65.4	Low	4.5	60	Left	1
6	84111.1	22.5	Low	4.47	60	Left	1
7	84151.9	40.8	Low	4.49	60	Left	1
8	84198.2	46.3	Low	4.52	63	Right	5
9	84264.7	66.5	High	5.61	61	Center	3
10	84284.0	19.3	High	5.56	61	Center	9
11	84289.6	5.6	High	5.49	63	Right	5
12	84318.8	29.2	High	5.51	61	Center	3

Field Book

Core #	Station	Distance	Now col	lect core d	lielectric r	eadings:
	83800.0	=start	Time file#	Time Rdg	Dist. file#	Dist. Rdg
1	83802.7	2.7				
2	83835.1	32.4				
3	83887.5	52.4				
4	84023.2	135.7				
5	84088.6	65.4				
6	84111.1	22.5				
7	84151.9	40.8				
8	84198.2	46.3				
9	84264.7	66.5				
10	84284.0	19.3				
11	84289.6	5.6				
12	84318.8	29.2				

- 1. Be "fussy" and precise
- 2. Strive for $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation
- 4. Select 21 Core Locations with PaveScan

5.Collect time readings

- 6. Collect distance readings
- 7. Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)
- 8. Use vacuum drying and sealing methods for determination of Bulk Density

- 1. Be "fussy" and precise
- 2. Strive for $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation
- 4. Select 21 Core Locations with PaveScan
- 5. Collect time readings

6.Collect distance readings

- 7. Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)
- 8. Use vacuum drying and sealing methods for determination of Bulk Density

Contractor QC

Allow contractor to collect QC data at core locations.

- 1. Be "fussy" and precise
- 2. Strive for $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation
- 4. Select 21 Core Locations with PaveScan
- 5. Collect time readings
- 6. Collect distance readings
- Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)
- 8. Use vacuum drying and sealing methods for determination of Bulk Density

- 1. Be "fussy" and precise
- 2. Strive for $R^2 \ge 0.95$
- 3. Collect enough PaveScan data to get full range of compaction variation
- 4. Select 21 Core Locations with PaveScan
- 5. Collect time readings
- 6. Collect distance readings
- 7. Wait until mat is cool before drilling cores. (If possible drill calibration cores the next day)

8. Use vacuum drying and sealing methods for determination of Bulk Density

- Collect a representative sample of loose asphalt mix from the calibration area for determination of MSG
- Run duplicate tests
- Test results should agree within single operator precision
- Run additional tests until precision is met

- Collect a representative sample of loose asphalt mix from the calibration area for determination of MSG
- Run duplicate tests
- Test results should agree within single operator precision
- Run additional tests until precision is met

- Collect a representative sample of loose asphalt mix from the calibration area for determination of MSG
- Run duplicate tests
- Test results must agree within single operator precision
- Run additional tests until precision is met

- Collect a representative sample of loose asphalt mix from the calibration area for determination of MSG
- Run duplicate tests
- Test results should agree within single operator precision
- Run additional tests until precision is met

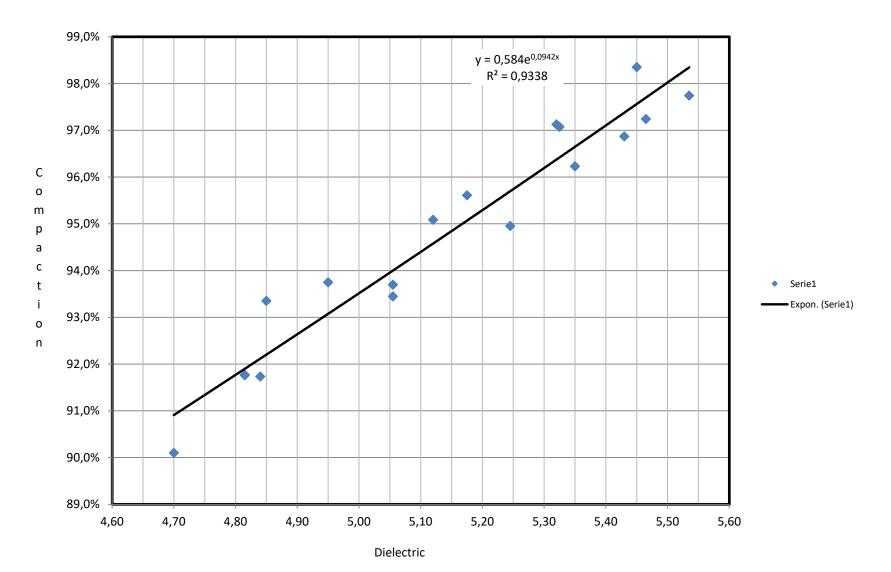
Duplicate MSG Testing

Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures AASHTO T 209 (ASTM D2041)

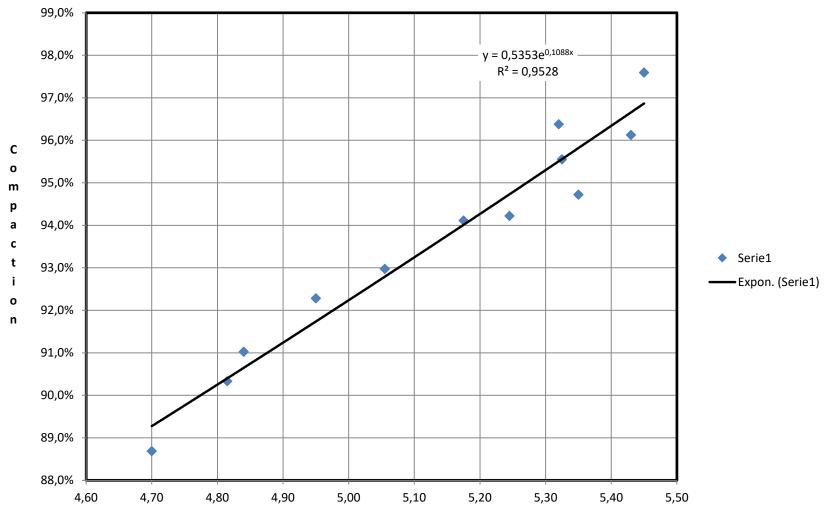
Duplicate MSG Tests

Type of mix:		Size of Sample:		No. of Samples:				
Begin Test Date:		Finish Date:						
Calculations: Weighing in Water					Data:			
					Split 1	Split 2	Average	
A	Mass of oven dry sam or Mass of wet sample	ble in air (i.e. from field sample) Ro	equires %N	/ below	1852.3 g	1821.3 g		
В	Submerged weight of e	empty bowl or flask in wate	er at 25 ± 1	0 C	5000.0 g	5000.0 g		
С	Submerged weight of t	oowl or flask with sample i	n water at	25 ± 1° C	6105.1 g	6085.1 g		
С-В	Submerged weight of s	sample in water at 25 \pm 1°	С		1105.1 g	1085.1 g		
A-(C-B)	Weight of water displace		747.2 g	736.2 g				
G _{mm} = A/[A-(C-B)]	Maximum the	oretical specific	; gravit	у	2.479	2.474	2.477	
Eng = $G_{mm}(62.245)$	Unit weight (pcf)				154.3	154.0	154.2	
SI = G _{mm} (997.1)	Unit weight (kcm)				2472	2467	2470	

Field Book


Core dielec	tric readings	:	Core test values:	
Time file#	Time Rdg	Dist. file#	Dist. Rdg	% Compaction, %Void, or SpG

Calibration: Cores vs Nuke, R² = 0.82



Nuclear Density (pcf)

Calibration: Cores vs RDM, R² = 0.93

Calibration w/Cores after 1 Day of Traffic Cores vs RDM R² = 0.95

Dielectric

QUESTIONS?

richard.giessel@alaska.gov

(907) 269-6244