

Appearance of surface texture

Double-layer porous asphalt (top) Single-layer porous asphalt Reference – SMA 16

Double-layer porous asphalt, 11 mm max. aggr. size in top layer

Noise reduction relative to SMA 16, using the CPX method, at 90 km/h [in dB(A)]:

Age: 1 week 1 month 12 months 13 months 24 months

For tyre P1 (cars): 7.8 7.6 7.8 7.8 7.2 dB(A)

For tyre H1 (trucks): 6.6 7.3 7.5 7.6 7.6 dB(A)

Single-layer porous asphalt concrete, 11 mm max. aggr. size

Noise reduction relative to SMA 16, using the CPX method, at 90 km/h, before repaving [in dB(A)]:

 Age:
 1 week
 1 month
 12 months
 13 months
 24 months

 For tyre P1 (cars):
 -- 2.3
 2.8
 2.5
 2.6 dB(A)

 For tyre H1 (trucks):
 -- 1.1
 2.2
 2.3
 2.5 dB(A)

Single-layer porous asphalt concrete, 11 mm max. aggr. size

Noise reduction relative to SMA 16, using the CPX method, at 90 km/h, after laying an extra top layer (exkl K1N) [in dB(A)]:

Single-layer porous asphalt concrete, 11 mm max. aggr. size

Noise reduction relative to SMA 16, using the CPX method, at 90 km/h, after laying an extra top layer (only K1N) [in dB(A)]:

 Age:
 1 week
 1 month
 12 months
 13 months
 25 months

 For tyre P1 (cars):
 -- 2.3
 2.8
 2.5
 6.3 dB(A)

For tyre H1 (trucks): --- 1.1 2.2 2.3 5.2 dB(A)

0	 			
For tyre P1 (cars):	 5.3	5.0	5.3	dB(A)
For tyre H1 (trucks)	 6.2	5.3	5.3	dB(A)

Texture and unevenness measurement results on the porous pavements

Pavement type	Time	Macrotexture MPD [mm]	Megatexture RMS [mm]	IRI
Single-layer asphalt	July 2010	1.76	0.70	0.82
Double-layer asphalt	July 2010	1.79	0.71	0.61
Single-layer asphalt	May 2011	1.86	0.84	0.93
Double-layer asphalt	May 2011	1.81	0.79	0.65

Noise reduction of porous pavements as a function of their voids content and thickness – data compilation in the 1990's from various countries

Noise reduction of porous pavements as a function of their voids content and thickness – applied to this case

Sound absorption model by T Beckenbauer, Germany

Beckenbauer, T. (2008): 'Physik der Reifen-Fahrbahn-Geräusche', Geräuschmindernde Fahrbahnbeläge in der Praxis – Lärmaktionsplanung, 4. Informationstage

Frequency spectra at one month of age and 90 km/h

Gaining extra noise reduction and lower rolling resistance by grinding a porous asphalt pavement

Ground strip of approx. 65 m x 0.9 m as it appeared before it was vacuum-cleaned

Comparison of the surfaces before and after grinding

Original, non-ground surface

Modified, ground surface

Illustration of original profile curve – before grinding

Illustration of new profile curve – after grinding

Noise measurement results

Pavement/surface	Measured noise level for tyre P1			Measured noise level for tyre H1		
	50 km/h	70 km/h	90 km/h	50 km/h	70 km/h	90 km/h
Ref. surface (SMA 16)	93.7	98.5	102.3	92.4	97.4	101.2
Non-ground DPAC	87.9	92.1	94.7	86.3	90.6	93.6
Ground DPAC	85.2	89.5	92.8	85.9	90.2	93.0
Red. vs non-ground	2.7	2.6	1.9	0.4	0.4	0.6
Reduction vs SMA 16	8.5	9.0	9.5	6.5	7.2	8.2

Frequency spectra before and after grinding

CPX method, average for the two ref tyres and for speeds 70 and 90 km/h

Effect on rolling resistance coefficient

Rolling resistance coefficient, for 3 tyres (P1 - SRTT, H1 - AAV4, and MCPR) and 2 speeds

